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The limit cycles of brain activity are studied using a compact continuum model that reproduces the main
features of electroencephalographic signals, including bifurcations of fixed points and limit cycles in seizures.
Frequencies and amplitudes are predicted analytically and related to physiology. Gaussian stimuli yield two
distinct evoked responses in the linearly stable zone, consistent with experiment. Limit cycles can be initiated
or suppressed by control signals or stimuli.
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I. INTRODUCTION

Much effort has been devoted to understanding complex
brain dynamics, often observed using electroencephalograms
�EEGs� resulting from cortical electrical activity �1–3�.
EEGs in epilepsy, Parkinson disease, and related conditions
show limit-cycle dynamics due to coherent collective behav-
ior �synchrony� of neurons �4,5�, while healthy EEGs are
mostly unsynchronized �6�. It has thus been suggested that
control of synchrony of populations of neurons could pro-
vide a therapy for neural disorders associated with abnormal
synchrony �7–10�, which include essential tremor, sleep-
related movement disorders, flickering hallucinations in mi-
graine, and Charles Bonnet syndrome �11–13�. Control might
be attained via stimuli applied via a control loop, as an alter-
native treatment for the above disorders. These long-term
aims require synchronous behavior to be related explicitly to
its physiological basis.

To study epileptic limit cycles and increase insight into
factors underlying their potential control, we use a recent
physiologically based compact mean-field model for dynam-
ics of the coupled cortex and thalamus �14�, which describes
the relevant brain activity via a second-order delay differen-
tial equation for the cortical excitatory activity, following
approaches developed since the 1970s ��15� and references
therein�. The model includes key physiological features such
as corticocortical propagation and delayed feedbacks via
subcortical pathways, discussed in detail previously �14�.
When driven by noise, the model reproduced and unified
many properties of EEGs �e.g., spectral peaks, epileptic dy-
namics� in a physiologically plausible parameter region with
greater simplicity than previous studies �17,18�. It can be
further linked to physiological experiments via its connection
to previous models whose parameters have been calibrated
against clinical outcomes �15�; a detailed comparison is
given in �14�.

Here we characterize epileptic limit cycles, frequencies,
and amplitudes in terms of the strengths of corticocortical
coupling and delayed subcortical feedback, which relates the
dynamical origin of the limit cycles to physiologically mea-
surable quantities. We further probe limit-cycle behaviors by
applying short external stimuli. Linear model responses are

consistent with experimental evoked responses �ERs�
�19–22�. We demonstrate that epileptic cycles outside the
linearly stable zone can be suppressed by applying discrete
stimuli, as proposed in other contexts �7–10�. When a limit
cycle and fixed point coexist, we show the cycle can be
initiated by a stimulus, providing a mechanism for reflex
�e.g., photosensitive� epilepsy �23�. Our physiologically
based model thus provides a step forward studying neuronal
synchrony and its mechanisms, potentially relevant to the
above disorders.

II. COMPACT MODEL FOR BRAIN ACTIVITY

Model equation. Since temporal dynamics is of interest in
this work, we model electrical activity at the scalp introduc-
ing the nondimensional quantities: spatially homogeneous
field ���� �a perturbation to a state of the system� and �
=�t, where � is a decay rate of the field �14,16�. The relevant
model equation is �14�

d2����/d�2 + 2d����/d� = c1���� + �2�2��� + �3�3���

+ c2��� − �0� + c3�n�� − �0/2� ,

�1�

where c1����, �2�2���, and �3�3��� ��3�0� represent linear
and nonlinear activity due to cortical neurons, c2���−�0� de-
notes delayed feedbacks via a subcortical loop, and �0 is the
loop delay. The stimulus c3�n��−�0 /2� is delayed at the cor-
tex by �0 /2 since it is applied to the thalamus. The stimulus
can be further approximated by white noise ���� in many
situations �������=0 and �����������=���−���, where angu-
lar brackets denote an average over ��. cj and � j can be
written directly in terms of neural gains or firing rates and
densities and strengths of connections, while �0=�t0
=vt0 /re, t0 is the dimensional loop delay, and v and re are the
mean cortical signal velocity and range of long-range corti-
cocortical axons �see Ref. �14� for a detailed discussion of
these parameter values and their connections to the underly-
ing physiology�.

Steady states and stabilities. For �0=0, the system �Eq.
�1�� has a fixed point �� ,d� /d��= �0,0�, which becomes un-
stable when c1+c2	0 �zero-frequency instability�. For �0
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	0, the fixed point bifurcates to a limit cycle when c1	cp
�14�, with cp and 
 satisfying

cp = − 
2 + 2
/tan 
�0, �2�

2
 + c2 sin 
�0 = 0. �3�

When c2�0 a low-frequency �
�0��� instability occurs,
whereas a high-frequency ���
�0�2�� instability occurs
for c2	0 �Fig. 1�a��. For our parameter values, zero-, low-,
and high-frequency instabilities correspond to slow-wave, ,
and � instabilities in electrophysiological terminology. Fig-
ure 1�b� demonstrates the emergence of limit cycles when
the system leaves the stable zone. Using an initial “per-
turbed” state �����=��+� for −�0���0, where �� is a
fixed point of Eq. �1� and � is a small random number�, we
obtain limit cycles at 4.3 and 11.5 Hz �I and III in Fig. 1�b��,
corresponding to  �3–7 Hz� and � �8–12 Hz� rhythms.

Frequencies and amplitudes of limit cycles. In the limit-
cycle regime, the solution of Eq. �1� is

��t� � �max cos 
� + �0, �4�

where �0 is the nonzero base line of the oscillation. Inserting
Eq. �4� into Eq. �1�, we obtain equations for the frequency 
,
amplitude �max, and base line �0 of the limit cycle from
cosine and sine Fourier transforms of Eq. �1�, giving

�max
2 = −

4

3�3
�c1 + 
2 −

2


tan 
�0
+ 2�2�0 + 3�3�0

2	 , �5�

where 
 and �0 are roots of Eqs. �3� and �6�, respectively:

�c1 + 2
2 −
4


tan 
�0
+

2


sin 
�0
+

4�2
2

3�3
	�0 + 5�2�0

2 + 5�3�0
3

− �2�2/3�3��c1 + 
2 − 2
/tan 
�0� = 0. �6�

When c1→�, we find �0�2�2 /3
�3
 and �max��4c1 /3
�3
,
from the dominant terms in Eqs. �5� and �6�. Similarly, �0
�2�2 /3
�3
 and �max��4c2 /3
�3
 when c2→ �� �i.e., 
�0
→� or 2� for low- or high-frequency regions, respectively�.
Figures 2�b� and 2�d� show �max��c1��c2�, while �0
�const, which supports the above approximations. Dimen-
sionless frequencies depend only on c2, as seen from Eq. �3�
and Fig. 2�c�.

Bifurcations and hysteresis. Figure 3 shows attractors of
Eq. �1� obtained as follows. For �0=0, setting all derivatives

in Eq. �1� to zero, we find a trivial fixed point ��=0 that is
stable for c1�cb=−c2+�2

2 /4�3. For �0�0, seeking solutions
of Eq. �1� of the form ��e��, we can obtain the critical point
cp where a limit cycle emerges �14�. Since this bifurcation is
of most interest here, we restrict our analysis and numerics to
the vicinity of cp. Note that the system has nonzero fixed
points, one stable and one unstable, for c1�cb. These fixed
points can potentially be important for understanding certain
electrophysiological activities of the brain, such as base-line
shifts of EEG signals. However, in order to stress and focus
on the main bifurcation feature �i.e., the emergence of limit
cycles from a fixed point, mentioned above�, we do not dis-
cuss the dynamical properties of other fixed points.

The amplitudes of the limit-cycle attractors �Eq. �5�� are
shown as dashed lines in Figs. 3�a� and 3�b� for supercritical
and subcritical bifurcations, respectively. From Eq. �6�, �0
can have up to three solutions for given parameters of the
model �Eq. �1��. �max �Eq. �5�� thus has multiple values as
well, yielding specific types of bifurcations. In particular, for
a subcritical bifurcation �Fig. 3�b��, the system can have mul-
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FIG. 1. �a� Stable zone �from �2� and �3�� and �b� numerical
solutions of Eq. �1� while the system crosses the instability bound-
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FIG. 3. Schematics of model bifurcations ��a� supercritical and
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tiple attractors for c��c1�cp, where c� is a saddle node
from which an additional unstable cycle emanates.

For a subcritical bifurcation �Fig. 3�b��, hysteresis is seen
when the system loses and regains stability. For example, a
system initially attracted to a fixed point �see Ib in Fig. 3�b��
can stay there although it moves into zone IIb where a fixed
point and stable limit cycle coexist. However, the state bifur-
cates to a limit cycle as the system crosses the instability
boundary to zone IIIb. The limit cycle persists when the sys-
tem moves into zone IIb again. The system regains its initial
state once it returns to zone Ib, as seen in the bottom plot in
Fig. 3�c�. In contrast, the top plot in Fig. 3�c� shows no
hysteresis because the bifurcation is supercritical.

Evoked responses. We now consider ERs to discrete
Gaussian stimuli. In the stable zone, we linearize Eq. �1� and
Fourier transform to get the transfer function �14�

��
� =
− ei
�0/2�n�
�


2 + 2i
 + c1 + c2ei
�0


− ei
�0/2�n�
�
�2�
�

, �7�

where �n�
�=c3e−�2
2/2 for �n���=c3e−�2/2�2
. Inverse trans-

forming �7� yields

�ER = �d1e−�� + �0/2�2/2�2
,

d2e−
i��+�0/2� sin�
r�� + �0/2� + �� ,
� �8�

where d1,2 are constants, 
=
r+ i
i �
r and 
i are real�, and
�=��
r ,
i� are determined by the condition �2�
�=0,
which gives explicit equations for 
r and 
i and yields Eqs.
�2� and �3� when 
i=0.

Figure 4 shows the phase diagram and typical ERs
�gradually returning to the fixed point� obtained from our
compact model �1�. These forms—a damped resonance su-
perposed on a long-lived shift �ERI� and a damped resonance
�ERII�—are consistent with previous literature �19–22�,
which shows good agreement with the approximation �Eq.
�8��, apart from small nonlinear oscillations.

III. CONTROL OF LIMIT CYCLES

Equation �7� is invalid beyond the instability boundaries,
where dynamics is locked to strong limit cycles. To investi-
gate the effect of stimuli on these cycles, we apply two con-
secutive Gaussian stimuli � j =c3e−�� − Tj�

2/2�2
�T1�151�0, T2

�305�0, c3=20, and ��0.1 /
� to each of two systems: �i�
one has only one limit-cycle attractor �zone IIa, Fig. 3�a��,
while �ii� the other has a limit-cycle attractor and fixed point

�zone IIb, Fig. 3�b��. As shown in Fig. 5, limit cycles can be
suppressed temporarily for �i� �top plot, Fig. 5�a�� because
any perturbed state eventually returns to the limit cycle.
However, suppression can be permanent for �ii� �bottom plot,
Fig. 5�a�� because external stimuli can push the system to be
attracted to a fixed point.

Similar techniques for suppressing Parkinsonian limit
cycles have been proposed, based on generic phase oscillator
descriptions of collective behavior. These showed that abnor-
mal synchrony can be destroyed by a double-pulse stimulus
�7� or delayed linear �8� or nonlinear �9� feedback. These
authors suggested temporally structured and impulsive
stimuli as a potential therapy for neural disorders with abnor-
mal synchrony. Our method, based on a mean-field descrip-
tion of the dynamics of neuronal populations, will further
facilitate such applications by providing more detailed con-
nections to underlying mechanisms via its physiologically
based parametrization.

We also observe initiation of limit cycles by a stimulus
when the system has a subcritical bifurcation. The system,
initially attracted to a fixed point, evolves to a limit cycle if
a stimulus is strong enough to perturb the stability of the
fixed point and push the dynamics to the periodic attractor
�i.e., c3��max�. A similar stimulus-locked response occurs
for two phase oscillators coupled by delayed feedback �10�,
but our result differs because we model neural fields, not just
their phase.

This sudden emergence of stable limit-cycle behavior
from a fixed point may explain reflex �e.g., photosensitive�
epilepsies �23�. The system can regain its initial state when
the second stimulus perturbs the limit-cycle attractor as
shown in the lower plot in Fig. 5�a�. One could also seek
therapies or preventive measures �e.g., pharmacological� that
widen the basin of attraction of the original fixed point or
change the topology of the system to avoid the subcritical
bifurcation structure.

Suppression of limit cycles requires fine-tuning because
its effectiveness depends on parameters of stimuli, as for
Parkinsonian tremors �9�. To find the optimal stimulus we
apply similar methods as used to find �max, giving

FIG. 4. �a� Phase diagram and �b� typical forms of ERs �ob-
tained from Eq. �1��. Thick solid lines in �a� are the instability
boundaries from Fig. 1�a�. The shaded area for ERII is determined
by the condition of Eq. �7� having a pole.
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��s
2 − p��s � qc3�e−
2�2/2 cos 
�Ts + �0/2� , �9�

− �2
 + c2 sin 
�0��s � qc3�e−
2�2/2 sin 
�Ts + �0/2� ,

�10�

where Ts is the stimulus time, p=4�
2+c1
+c2 cos 
�0� /3
�3
	0, and q=4�2� /3
�3
	0 �we set �2
=0 for simplicity�. The stimulus suppresses a limit cycle ef-
fectively if �s obtained from Eqs. �9� and �10� is small.

Since 
 is roughly independent of the stimulus �Fig. 5�a��,
the left-hand side of Eq. �10� becomes zero due to Eq. �3�, so

�Ts+�0 /2�=n� for integer n. To have �s	0, Eq. �9� re-
quires cos 
��Ts+�0 /2���0, so 
�Ts+�0 /2�→ �2n+1��.
Thus, optimal timing relative to a cycle peak is

�Ts = �2� − 
�0�Tp/4� , �11�

from which �Ts�0.23Tp �Tp=2� /
� for the given param-
eters �Fig. 5�b��. A similar condition was found previously
�18� where numerics demonstrated that, to suppress seizures,
control stimuli should be applied slightly before a seizure
signal reaches maximal negative polarity. Since external con-
trol stimuli are relayed to cortex with a time delay �0 /2 in
our model, they should be applied �0 /2 earlier, as verified by
numerics �Fig. 5� and Eq. �11�.

Equation �9� has a positive solution only when

c3 � re
2�2/2/� , �12�

where r=2�p /3�3/2 / 
q cos 
�Ts+�0 /2�
, which defines the
area below the curve in Fig. 5�c�. The right-hand side of Eq.
�12� has a minimum r
�e ��1.6 �max� when �=1 /

��0.16 Tp�, which defines optimal c3 and � �Fig. 5�. Figure
5 shows that �Ts is well estimated by Eq. �11�, while c3 is
underestimated by Eq. �12�, but within a factor of 2.

IV. CONCLUSION

We have probed limit-cycle behaviors of the brain and
shown how they are modulated by physiological parameters
and stimuli in linear and nonlinear regimes. As a prelude to
more targeted modification, potentially via a control loop, we
showed that limit cycles can be suppressed by stimuli and
analyzed optimal stimulus times, strengths, and widths. Ini-
tiation of limit cycles by stimuli, resembling reflex epilepsy,
was also discussed.

ACKNOWLEDGMENTS

We thank S. J. van Albada, H. Henke, and A. J. Phillips
for their comments. The Australian Research Council sup-
ported this work.

�1� M. P. Stryker, Nature �London� 338, 297 �1989�.
�2� A. M. L. Coenen, Neurosci. Biobehav. Rev. 19, 447 �1995�.
�3� E. Niedermeyer and F. H. Lopes da Silva, Electroencephalog-

raphy: Basic Principles, Clinical Applications, and Related
Fields, 4th ed. �Williams and Wilkins, Baltimore, 1999�.

�4� R. Llinas and H. Jahnsen, Nature �London� 297, 406 �1982�.
�5� D. Pare, R. Curro’Dossi, and M. Steriade, Neuroscience 35,

217 �1990�.
�6� A. Nini, A. Feingold, H. Slovin, and H. Bergmann, J. Neuro-

physiol. 74, 1800 �1995�.
�7� P. A. Tass, Phase Resetting in Medicine and Biology: Stochas-

tic Modelling and Data Analysis �Springer, Berlin, 1999�; P. A.
Tass, Biol. Cybern. 85, 343 �2001�.

�8� M. G. Rosenblum and A. S. Pikovsky, Phys. Rev. Lett. 92,
114102 �2004�; Phys. Rev. E 70, 041904 �2004�.

�9� O. V. Popovych, C. Hauptmann, and P. A. Tass, Biol. Cybern.
95, 69 �2006�.

�10� V. Krachkovskyi, O. V. Popovych, and P. A. Tass, Phys. Rev. E
73, 066220 �2006�.

�11� G. Deuschl, J. Raethjen, R. Baron, M. Lindemann, H. Wilms,
and P. Krack, J. Neurol. 247, Suppl. 5, V/33 �2000�; G.
Deuschl and H. Bergman, Mov. Disord. 17, Suppl. 3, S41
�2002�.

�12� G. C. Brown and R. P. Murphy, Arch. Ophthalmol. 110, 1251
�1992�.

�13� R. Manni and M. Terzaghi, Neurol. Sci. 26, s181 �2005�; G.
Mayer, J. Wilde-Frenz, and B. Kurella, J. Sleep Res. 16, 110
�2007�.

�14� J. W. Kim and P. A. Robinson, Phys. Rev. E 75, 031907
�2007�.

�15� P. A. Robinson, C. J. Rennie, D. L. Rowe, and S. C. O’Connor,
Hum. Brain Mapp. 23, 53 �2004�; P. A. Robinson, C. J. Ren-
nie, D. L. Rowe, S. C. O’Connor, and E. Gordon, Philos.
Trans. R. Soc. London, Ser. B 360, 1043 �2005�.

�16� P. A. Robinson, C. J. Rennie, and J. J. Wright, Phys. Rev. E
56, 826 �1997�.

�17� P. A. Robinson, C. J. Rennie, and D. L. Rowe, Phys. Rev. E
65, 041924 �2002�; P. A. Robinson, C. J. Rennie, D. L. Rowe,
S. C. O’Connor, J. J. Wright, E. Gordon, and R. W. White-
house, Neuropsychopharmacology 28, S74 �2003�.

�18� P. Suffczynski, S. Kalitzin, and F. H. Lopes da Silva, Neuro-
science 126, 467 �2004�; P. Suffczynski, F. H. Lopes da Silva,
J. Parra, D. Velis, and S. Kalitzin, J. Clin. Neurophysiol. 22,
288 �2005�.

�19� C. J. Rennie, P. A. Robinson, and J. J. Wright, Biol. Cybern.
86, 457 �2002�.

�20� H. Shibasaki, M. Nakamura, and S. Nishida, Electroencepha-
logr. Clin. Neurophysiol. 66, 200 �1987�.

�21� V. J. Samar, K. P. Swartz, and M. R. Raghuveer, Brain Cogn.
27, 398 �1995�.

�22� S. Makeig et al., J. Neurosci. 19, 2665 �1999�.
�23� C. D. Binnie, in Epilepsy: A Comprehensive Textbook, edited

by J. Engel and T. A. Pedley �Lippincott-Raven, Philadelphia,
1998�, p. 2489; B. G. Zifkin and F. Andermann, in Epilepsy: A
Comprehensive Textbook, edited by J. Engel and T. A. Pedley
�Lippincott-Raven, Philadelphia, 1998�, p. 2507.

J. W. KIM AND P. A. ROBINSON PHYSICAL REVIEW E 77, 051914 �2008�

051914-4


